

Philadelphia University

Faculty of Engineering - Mechatronics Engineering Department Second Semester 2019/2020

Course Details

Title: Reverse Engineering (0640458)

Prerequisite: Engineering Skills

Class Time Sun/Tues/Thurs 10.10 → 10.00

Credit Three credit hours (16 weeks per semester, approximately 45 contact

Hours: hours)

Textbook: Product Design: Techniques in Reverse Engineering and New Product

Development by Otto and Wood. PE 2011

References 1. Reverse Engineering: Mechanisms, Structures, Systems & Materials

by Robert Messler 2013

3. Reverse Engineering by R. Hinrichs 2015

4. Reverse Engineering: An Industrial Perspective by Raja and

Fernandes. 2008

4. Reversing: Recent Advances and Applications Edited by A. Teila

2012

Description: The course is a requirement for level 4th level engineering students. It

introduces students to Reverse Engineering Methodology through

practical case studies and class projects.

Website: http://www.philadelphia.edu.jo/academics/mbaniyounis

Instructor: Dr. Mohammed Baniyounis

Email: mbaniyounis@philadelphia.edu.jo

Office: Engineering building, room 732, ext: 2137
Office hours: Sun/Tues/Thurs: 11.30 → 13.30

Course Learning Outcomes with reference to ABET Student Outcomes

Upon successful completion of this course, student should:

1.	Understand the Reverse Engineering (RE) Methodology	[e, k]
2.	Compare forward design with re-engineering	[e, k]
3.	Analyze product functions and Evaluate their performance	[b, c]
4.	Disassemble products and specify interactions among subsystems and their functionality	[b, e, k]
5.	Understand Computer-Aided RE and Rapid Prototyping Technology	[b, e, k]
6.	Know the latest technologies used in RE for PCBs	[j, c, k]
7.	Understand RE applications in software engineering	[b, j, k]
8.	Understand professional and ethical responsibilities regarding RE	[f]
9.	Apply RE methodologies in a multi-disciplinary within a team environment	[d, g, h, i]
10.	Write technical report and present results to the class	[d, g]

Philadelphia University

Faculty of Engineering - Mechatronics Engineering Department Second Semester 2019/2020

Course Academic Calendar					
Week	Subject	Notes			
Feb 16	Introduction				
Feb 23	Forward Engineering Design: Design thought and process, design steps				
March 1	Forward Engineering Design: examples				
March 08	System RE: RE methodology, RE steps	Prescreening			
March 15	System RE: product development, product functions				
March 22	System RE: Product teardown, engineering specs, product	Observation			
Exam I (March 18-26)					
March 29	Case Studies; Group Discussions				
April 05	Mechanical RE: Computer aided RE				
April 12	Mechanical RE: rapid prototyping	Dissection			
April 19	Electronic RE: Identify components				
April 26	Electronic RE: PCB RE	Analysis			
Exam 2 (April 22- 30)					
May 03	Electronic RE: VHDL				
May 10	Software RE	Report Due			
May 17	Student Project Presentations				
Eid Al-fater 23-26 May					
May 24	Review				
FINAL EXAMS (May 30 – June 06)					

Assessment Guidance:

Evaluation of the student performance during the semester will be based on the following:

Exams: Two in-class exams will be given. Each will cover about 6-

weeks of lectures.

Project: A project assignment will be handed to the students. The

assignment will ask the students to reverse engineer a particular product. Students will be asked to write a technical report, show their work in the lab, and present it. A group of

two students are expected to work on the project.

Final Exam: The final exam will cover all the class material.

Quizzes: 10-minute quizzes will be given to the students throughout

the semester and will be used as bonus points.

Grading Policy:

First Exam	15%	
Second Exam	15%	
Project	30%	
Final Exam	40%	
	Total: 100%	